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Ashworth and Davies (1977) have recently discussed space-time geodesics 
and spatial geodesics on a rotating disk. By hypothesis, timelike geodesics in 
space-time represent possible paths of free particles, null geodesics in space- 
time represent possible paths of photons, and spatial geodesics are defined as 
paths along which the distance between any two fixed points is a minimum. 

A special feature of their work is that the geodesic solutions are expressed 
in terms of two different coordinate systems Sl(r l ,  01, zl ,  tl) and $2(r2, 02, z2, t2), 
each of which is associated with the rotating disk. According to Ashworth 
and Davies, the two solutions 01 = 01(rl) and 02 = 02(r2), for each type of 
geodesic considered, are fully equivalent, the distinction between them being 
related to the different types of measurement which observers on the disk 
would be expected to make. However, it will be shown in this note that 01, 
unlike 02, does not have the status of a coordinate in the normal sense (one 
of four variables which serve to label events in space-time) and that the 
solutions quoted are therefore not equivalent. We argue nevertheless that 01 
does possess some significance, i.e., it is a plane polar coordinate in a 
particular type of representation (on a Euclidean plane) of geodesic paths on 
the disk. 

Consider a disk which rotates with constant angular velocity a, with 
respect to an inertial frame, and assume space-time is flat. Using the notation 
of Ashworth and Davies (except that we suppress the z coordinate through- 
out), let (r, 0, t) and (r2, 02, t2) be coordinates in the inertial and disk frames, 
respectively, related by the Galilean transformation 

r = r2, 0 = 02 + o~t2, t = tz (1) 

the axis of rotation passing through r = rz - 0. Application of the usual 
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relativistic postulates (Moller, 1952; Landau and Lifshitz, 1971) to the metric 

ds 2 = d r  2 + r 2dO 2 -  c 2 dt 2 

= dr2 2 + r2  2 dO22 + 2o~r22 dO2 dt2 - (c 2 - oJ2r22) dt22 (2) 

leads to the conclusion that the distance between the reference points (r2, 02) 
and (r2 + dr2, 02 + dO2) on the disk is 

r22d022 ~1f2 
de2 = dr22 + 1 - eo2r22/c 2] (3) 

In variational terms, space-time geodesics and spatial geodesics are described 

by 3 f ] d s  = 0 and 3 [A B d% = 0, respectively. 

Ashworth and Davies first find the explicit solution for a space-time 
geodesic in the (r2, 02, t2) coordinates, eliminating t2 in the process so that 
the final result, 02 = 02(r2), is the locus of points traced out by the moving 
particle. The solution involves a parameter u, which is the (constant) velocity 
of the particle in the inertial frame. For a null geodesic, the appropriate result 
is obtained simply by setting u = c. They then proceed to show how the same 
result may be obtained by the method of "instantaneous Lorentz frames," 
essentially a special-relativistic method involving relationships between 
neighboring inertial frames whose origins are momentarily at rest with 
respect to the disk. 

It is during the latter analysis that the arguments of Ashworth and Davies 
become questionable. They introduce "a system of cylindrical coordinates 
Sl (r l ,  01, z l ,  tl)'" but do not at first specify what these coordinates are, apart 
from indicating that they are somehow associated with the disk. Later it 
becomes clear that rl is identical to r 2 (and tl is presumably identical to t 2 )  , 

but that dO~ is related to dO 2 by 

dO1 = dO2(1 - o~2r22/c 2 ) -  1/2 (4) 

It is now obvious, however, that the differential dO~ is inexact, i.e., the 
transformation from 02 to 01 is nonholonomic. Hence 01 has no general 
meaning which is independent of a particular path of integration. Expressed 
in another way, there is no 1 : 1 correspondence between reference points on 
the disk and coordinates (rl, 01), whereas there is such a correspondence for 
the coordinates (r2, 02). It cannot therefore be maintained that "the systems 
5'1 and $2 are equally valid for describing events in a rotating system . . . .  " 

Despite the objection that 01 has no path-independent meaning, Ash- 
worth and Davies show in a diagram (Figure 2 of their paper) part of the 
path of a particle which apparently moves from (r~ + dr1, 01) to (rl, 01 + dO O. 
They calculate by the method of instantaneous Lorentz frames the angle 
between the direction of motion of the particle and the radial line from the 
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origin to (rl + dr1, 01), and then equate tan q~ to rl dO1/drl. On integration, 
the "solution" 01 = 01(rl) is obtained for the geodesic. Treating rl and 01 
as conventional polar coordinates on a Euclidean plane, this equation is 
found, in the case of a null geodesic, to represent a circular arc, a result which 
is taken as confirmation of the previous work of Ashworth and Jennison 
(1976). 

We now indicate how in our view the defects in this analysis can be 
corrected, and we shed light on the significance of the variable 01. Adopting 
Ashworth and Davies's expression for tan q~, we consider a particle which 
moves on the disk between the reference points (r2, 02) and (r2 + dr2, 02 + dO2). 
Noting from equation (3) that in doing so the particle moves a distance dr2 
in the radial direction and r2 dO2(1 - co2r22/c2) -112 in the circuital direction, 
we equate tan q~ to r2(1 - o~2r22/c 2)- 1/2 dO2/dr2. On integration we immediately 
recover the previously derived solution 02 = 02(r2) for the locus of points 
traced on the disk by the moving particle. (It may be worth noting however, 
that a much simpler method for finding this solution consists in writing down 
the corresponding solution in terms of the inertial frame coordinates (r, 0, t), 
transforming to the rotating frame coordinates (r2, 02, t2) by equation (1), 
then eliminating the time coordinate.) 

On the other hand it is perfectly permissible to define rl = r2 and dO1 = 
d02(1 - oJ~r~2/c2) -112 so that tan ~ can be correctly equated to rl dO1/drl; 
integration then yields the result 01 = O~(rl) found by Ashworth and Davies. 
But the question now arises: what is the meaning of the variable 01 ? As we 
have already noted, 0i cannot serve to label reference points on the disk, 
since its value at any point on the disk would depend on the path of integra- 
tion selected. However, we observe that tan (~ = rl dOl[drl correctly relates 
infinitesimal distances traveled in the radial and circuital directions to the 
instantaneous direction of motion for a trajectory on a Euclidean plane whose 
polar coordinates are (rl, 01). Hence integration of that equation must yield a 
mapping of the disk trajectory into a Euclidean plane with polar coordinates 
(rl, 01), a mapping which correctly displays the instantaneous direction of 
motion of the particle or photon as a function of distance from the origin, but 
which gives a misleading impression of other aspects of the disk trajectory. 
In contrast, a mapping (rs --> r~ = r2, 02 -+ 0~ = 02) of the disk coordinates 
into a Euclidean plane with polar coordinates (r~, 0;) gives a different repre- 
sentation of the trajectory, one which correctly portrays the relationship 
between r2 and 02 for the trajectory but which gives a misleading impression 
of the instantaneous direction of motion and of distance traveled. The 
distinction between the two mappings arises simply because the intrinsic 
geometry on the disk is non-Euclidean. These conclusions are in agreement 
with those reported elsewhere by McFarlane and McGill (1978) and obviously 
apply to spatia! geodesics as well as to space-time geodesics. It should be 
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noted, however, that the two types of mapping are not quite on an equal 
footing, since in the first case we can speak only of trajectories (on the disk) 
being mapped onto other trajectories (on a Euclidean plane), whereas in the 
second case the whole disk is mapped into a Euclidean plane. This means that 
greater caution must be exercised in interpreting diagrams of the first type: 
for example, the point of intersection of two trajectories on a diagram of the 
first type corresponds in general not to one reference point on the disk but to 
two such points. 

Finally we note that Ashworth and Davies explain the distinction between 
the two coordinate systems $I and $2 in terms of difference in experimental 
procedure. They associate the description of the motion in terms of  (r2, 02, t2) 
with measurements made by an observer at the center of  rotation, and 
associate the description in terms of (rl, 01, tl) with "the interpretation of  
events made by an observer who is in synchronous rotation with the system 
and who actually moves through it, making measurements as he or she goes." 
However, these associations seem to us unconvincing and, in so far as they 
introduce an unnecessary subjective element, undesirable. In particular, we 
cannot see any reason why measurements on free particles or photons in 
terms of (r2, 02, t2) need be confined to observations carried out by an 
observer at the origin, nor do we understand why it need be assumed that the 
only measurements which observers distributed over the disk are likely to 
make are measurements of the local direction of a spatial path. It is of course 
desirable that one should be able to explain how, at least in principle, paths 
of free particles and photons on the disk could be determined experimentally 
so that they could be compared with theoretical predictions, and it is fairly 
easy to think of a number of ways in which this could be done. However, we 
do not subscribe to the view that theories can be properly interpreted or 
understood only in terms of experimental measurements, especially when in 
practice one particular type of measurement appears to be given excessive 
preference over others. 
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